
 11/11/2015Marcus Möller 1||

Docker Security

Is it safe to run applications within containers?

 11/11/2015Marcus Möller 2||

Container Technology

■ Linux Containers have been around for years (LXC)
■ Docker made it really easy to use them
■ The main focus of LXC wasn't security
■ We should ask ourselves:

■ Is it even possible to run containers in a secure manner?
■ Are containers the perfect solution for every use case?
■ Do we need to rethink the way we deploy applications

 11/11/2015Marcus Möller 3||

Container Facts

■ Container share the Kernel with the host
■ which is a huge difference to classic virtualization

■ Kernel Namespaces are being used for separation
■ cgroups are used for resource allocation

■ and prevent some kind of DDoS attacks
■ Docker daemon needs root priviliges

■ a security vulnerability potentially affects all containers

 11/11/2015Marcus Möller 4||

Can Containers be made secure?

■ Short answer: Yes
■ But:

■ If you run an application as root, assume those apps can try
anything to break out

■ suid can be used for privilege escalation
■ Kernel security issues might have impact on all Containers

and the Host system
■ e.g. bogus syscalls like vmsplice() which has been discovered 2008

■ If UIDs are the same on the Host and inside the container,
this might be used during attacks

 11/11/2015Marcus Möller 5||

Rule #1 – I am (not) root

■ Always run regular applications as non-priviliged user
inside a container

■ Use capabilities for high level applications (but only if really
necessary)

■ Suggestion: remove all Capabilities and only add those
which are really required

■ e.g. you should normally not need to use route, ip etc in a container

■ Drop capabilities if no longer needed
■ CAP_SYS_ADMIN is a risk

■ Can literally do anything
■ If really required, use it during startup to set up services and then

drop it

 11/11/2015Marcus Möller 6||

Rule #2 – If I am not root, whoami?

■ User Namespaces
■ UIDs inside a container should be mapped to a different UID

on the host
■ e.g. UID 0 in the container is mapped to some random UID outside

the container

■ Limits syscalls as they are done as unprivileged UID
■ Remember: x86_64 Linux kernel has over 600 system calls

■ Caveat: permissions on mounted volumes might need to
be adjusted

 11/11/2015Marcus Möller 7||

Rule #3 If root is really necessary, build walls

■ In some rare cases root is necessary
■ Run a VM inside a Container

■ to give it it's own Kernel
■ Run your priviliged Containers within that VM
■ Host Container VM Container

 11/11/2015Marcus Möller 8||

Rule #4 Use Security Frameworks

■ SELinux
■ AppArmor
■ Grsecurity

■ to harden the kernel
■ seccomp-bpf

■ to whitelist/blacklist syscalls

 11/11/2015Marcus Möller 9||

Rule #5 readonly is your friend

■ If ever possible run the container in readonly mode
■ easy to implement

■ Systemd tmpfiles.d
■ fedora-readonly.service

■ write to noexec mounts only

 11/11/2015Marcus Möller 10||

Rule #6 only use trusted images

■ If ever possible build your own images
■ Run your own hub

■ e.g. using Satellite 6.x
■ Use images from certified trusted sources only

■ <joeyh> I'll bet I could publish an image that just did a killall5 as root
on startup and get plenty of people to nuke their container hosts

■ Red Hat is working on a Certification program
■ Load images over trusted communication channels

 11/11/2015Marcus Möller 11||

Rule #7 update often

■ Keep the Host OS up to date
■ Use live patching for the kernel

■ Update your images regularly

 11/11/2015Marcus Möller 12||

Read On

■ Docker Security
■ https://docs.docker.com/articles/security/

■ Docker Security Future
■ https://opensource.com/business/15/3/docker-security-future

■ Docker run Debian
■ https://joeyh.name/blog/entry/docker_run_debian/

 11/11/2015Marcus Möller 13||

Thank you for listening

and don't let the Whale Fail

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13

